
Object Design

Class Specification
Association Specification

BankAccount

accountNumber : Integer
accountName : String {not null}
balance : Money = 0
/availableBalance : Money
overdraftLimit : Money

open(accountName : String) : Boolean
close() : Boolean
credit(amount:Money) : Boolean
debit(amount:Money) : Boolean
getBalance() : Money
setBalance(newBalance : Money)
getAccountName() : String
setAccountName(newName : String)

Class Specification (1)

name’:’type-
expression
‘=‘initial-value
‘{‘property-
string‘}’

operation
name‘(‘parameter-
list’)’ ’:’return-
type-expression

Primary operations: create,
destroy, get and set

Class Specification (2)

Visibility: what is publicly accessible
May be specified as properties BankAccount

- nextAccountNumber: Integer
- accountNumber: Integer
- accountName: String {not null}
- balance: Money = 0
- /availableBalance: Money
- overdraftLimit: Money

+ open(accountName: String): Boolean
+ close(): Boolean
+ credit(amount: Money): Boolean
+ debit(amount: Money): Boolean
+ viewBalance(): Money
getBalance(): Money
- setBalance(newBalance: Money)
getAccountName(): String
setAccountName(newName: String)

Class Specification (3)

UML
interface:
a group of
externally
visible
(public)
operations

- staffNo
- staffName
- staffStartDate
- qualif ication

CreativeStaff

+ calculateBonus()
+ linkToNote()

- title
- type
- targetDate
- estimatedCost
- completionDate

Advert

+ getCost()
+ setCompleted()
+ view()

Realize
relationships

«interface»
Manageable

+ getCost()
+ setCompleted()
+ view()

«interface»
Viewable

+ view()

Manageable Viewable

- companyName
- companyAddress
- companyTelephone
- companyFax
- companyEmail
- contactName
- contactTelephone
- contactEmail

Client

+ assignStaffContact()
+ changeStaffContact()

«use»
«use»

«realize»
«realize»

Criteria for Good Design (1)

Coupling and cohesion
Degree of interconnectedness between design
components – number of links and degree of interaction
Degree to which an element contributes to a single
purpose

Interaction coupling – low
Inheritance coupling – high
Operation cohesion – high
Class cohesion – high
Specialisation cohesion – high

Vehicle

decription
serviceDate
maximumAltitude
takeOffSpeed

checkAltitude()
takeOff()

LandVehicle

numberOfAxles
registrationDate

register()

Criteria for Good Design (2)

Lecturer

lecturerName
lecturerAddress
roomNumber
roomLength
roomWidth
calculateRoomSpace()

{return
 roomLenght*
 roomWidth;}

Criteria for Good Design (2)

Criteria for Good Design (2)

Address

number
street
town
county
country
postCode

Person

personName
age
gender

Company

companyName
annualIncome
annualProfit

Criteria for Good Design (2)

Address

number
street
town
county
country
postCode

Person

personName
age
gender

Company

companyName
annualIncome
annualProfit

lives at is based at

Criteria for Good Design (3)

ChequeAccount

accountName
balance

credit()
debit()

MortgageAccount

interestRate

 calculateInterest()
- debit()

Account

accountName
balance

credit()

ChequeAccount

debit()

MortgageAccount

interestRate

calculateInterest()

Restructuring
to

satisfy LSP

Liskov
Substitutability
Principle
(maximising
inheritance
coupling)

Criteria for Good Design (4)

Design guidelines
Design clarity
Don’t over design (designing flexibility has a cost)
Control inheritance hierarchies (4 or 5 levels)
Keep messages and operations simple
Design volatility
Evaluate by scenario
Design by delegation
Keep classes separate

Generalisation and Inheritance
(1)

Generalisation and inheritance are not the same!
Generalisation is a semantic relationship between classes
– superclass and subclass have the same interface

Substitution principle is central
Substitution leads to reduction of associations in the class
diagram

Inheritance is the mechanism by which subclasses
incorporate the structure and behaviour of their
superclass

Inheritance may defeat substitutability!
Inheritance compromises encapsulation – protected features
Inheritance is a class concept – except in Smalltalk

Generalisation and Inheritance
(2)

Interface inheritance (subtyping, type inheritance)
Harmless
Abstract classes for interface declaration

Implementation inheritance (subclassing, code
inheritance, class inheritance)

Can be dangerous!
Code reuse and polymorphism
Overriding – up calls
Extension inheritance (proper) – incremental class
definition

Overriding – more specific but with the same meaning

Generalisation and Inheritance
(3)

Restriction inheritance (problematic) – reuse of class properties
Maintenance problems

Convenience inheritance (improper)
Extensive overriding

Problems with implementation inheritance
Fragile base class – allow evolution of parent classes

Immutable public interfaces?
Overriding and callbacks (up calls)

Inherit interface and implementation without changes in the
implementation
Inherit code and call it within own method with unchanged signature
Inherit code and and completely override it maintaining the signature
Inherit empty code declaration and provide an implementation
Inherit the method interface and provide an implementation

Generalisation and Inheritance
(4)

Multiple inheritance
Interface – merging of
interface contracts
Implementation

Operation renaming

Ca m pa ign

ge tDa te Clos e ()
printTicke tDe ta ils ()
com pute Ticke ts Le ft()

BonusCampaign

printTicketDetails()
computeTicketsLeft()

Designing Associations (1)

Associations indicate possibility of links
Message-passing requires link
Multiplicities restrict the number of links
Association navigability

Do you have to send message?
Do you have to provide references?
But, references may be passed in messages!
Minimising the number of two way associations keeps
coupling low

Designing Associations (2)

One-to-one associations

Owner

- name : String
- address : Address
- dateOfLicence : Date
-numberOfConviction : Integer
- ownedCar : Car

owns

1

Car

-registrationNumber : Registration
- make : String
- model : String
- colour : String

1

carObjectId
is placed in the
Owner class

Arrowhead shows
the direction in

which messages can
be sent.

Designing Associations (3)

One-to-
many
associations

- staffNo
- staffName
- staffStartDate
- qualification

CreativeStaff

+ calculateBonus()
+ linkToNote()

*

1

1..*

manageCampaign

workOnCampaign

owns
 *

1

- title
- campaignStartDate
- campaignFinishDate
- estimatedCost
- completionDate
- datePaid
- actualCost

Campaign

+ assignManager()
+ assignStaff()
+ checkBudget()
+ checkStaff()
+ completed()
+ getDuration()
+ getTeamMembers()
+ linkToNote()
+ listAdverts()
+ recordPayment()

- title
- type
- targetDate
- estimatedCost
- completionDate

Advert

+ getCost()
+ setCompleted()
+ view()

*

One-way
association

Two-way
association

Designing Associations (4)
has

1

*

1

- title: String
- campaignStartDate: Date
- campaignFinishDate: Date
- estimatedCost: Money
- completionDate: Date
- datePaid: Date
- actualCost: Money
- ownedAdvertCollection: AdvertCollection

Campaign

+ assignManager()
+ assignStaff()
+ checkBudget()
+ checkStaff()
+ completed()
+ getDuration()
+ getTeamMembers()
+ linkToNote()
+ listAdverts()
+ recordPayment() - title: String

- type: String
- targetDate: Date
- estimatedCost: Money
- completionDate: Date

Advert

+ getCost()
+ setCompleted()
+ view()

owns

- ownedAdvert: Advert [*]

AdvertCollection

+ findFirst()
+ getNext()
+ addAdvert
+ removeAdvert()

1

Designing Associations (5)

:Campaign :AdvertCollection :Advert

listAdverts()

advert = *getNext()

advertTitle = getTitle()

advert = f indFirst()

[until no more adverts]
loop

end loop

advertTitle = getTitle()

Designing Associations (6)

Many-to-
many
associations

Inner
collection
classes
Library
collection
classes

Aggregation and delegation (1)

Aggregation and composition are kinds of
associations
Aggregation and composition are containment
relationships
Composition is a a kind of aggregation with
existence dependency
Different kinds of aggregation

Exclusive owns (composition, frozen)
Owns (composition)
Has (aggregation with transitivity and asymetricity)
Member (aggregation with many-to-many multiplicity)

Aggregation and delegation (2)

Generalisation versus aggregation
Classes versus objects
Inheritance versus delegation

GOrder

GPendingOrder

GBackOrder GFutureOrder

ABackOrder AFutureOrder

AOrder

APendingOrder

Aggregation and delegation (3)

Delegation and prototypical systems
Delegation: composite object (outer) – component
objects (inner)
Object (prototype) cloning
Aggregation – exposing the inner classes
Composition – encapsulating the inner classes

Treaty of Orlando: same system functionality can
be delivered with inheritance or delegation

Self-recursion has to be explicitly planned and designed
into delegation

Fragile base class problem is a result of unplanned reuse
Delegation enables dynamic sharing and reuse

Anticipatory and un-anticipatory sharing

Integrity Constraints

Referential integrity
Two-way associations
What happens when objects are removed?
Cascading deletes

Dependency constraints
Derived attributes and associations
Synchronising operations
Prevention and exceptions

Domain integrity
Ensure maintenance of invariants in update operations

Designing Operations

Algorithm design
Cost of implementation
Performance constraints
Requirements for accuracy
Capabilities of the
implementation platform

Computational complexity
Ease of implementation
and understandability
Flexibility
Fine-tuning the object
model

Operation design
documents

Activity diagrams
Formal specifications

Some guidelines
Operation should reside in
the same class as the
attributes that manipulate
Minimise object interaction
Simplicity
Place operation that not
owned by entity classes in
control classes

Normalisation

Functional dependencies
Attribute A is functionally dependent on attribute
B if for every value of B there is precisely one
value of A associated with it at any given time
Rules of normalisation group attributed along
functional dependencies – redundancy reduction

